skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hicks, SF"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jentschel, M (Ed.)
    Neutron elastic scattering cross sections on natural carbon serve as a reference standard in the incident energy range 10 eV to 1.8 MeV. The 2017 standards evaluation [1, 2] is 0.5 to 2.0% higher in that energy range than the 2006 standards evaluation [3]. In addition the ENDF/B-VIII.0 release split the natural carbon cross sections into the isotopes12C,13C, and14C for the first time. These details call for the re-measurement of the13C cross sections in sensitive regions. Ten elastic scattering angular distributions were recently measured for incident neutron energies between 0.5 and 3.25 MeV at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) using nanosecond pulsed beams and time-of-flight techniques. An overview of neutron production and detection, the new digital data acquisition system, and data analysis will be presented. Results are compared with data from previous measurements and database evaluations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. A campaign of Coulomb-excitation experiments to study the electromagnetic structure of \(^{110}\)Cd was performed using beams of \(^{14}\)N, \(^{32}\)S, and \(^{60}\)Ni. The use of various reaction partners enables disentangling the contributions of individual electromagnetic matrix elements involved in the excitation process, yielding, among others, a precise determination of the lifetime of the 2\(^+_2\) state in \(^{110}\)Cd. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
    Free, publicly-accessible full text available February 1, 2026